From ddcac21be1e2dd829da09201e417551fa969fb0e Mon Sep 17 00:00:00 2001 From: David Florness Date: Sun, 9 Feb 2020 21:16:47 -0700 Subject: [PATCH] OreSec talk: fix sum expansions --- doc/oresec-talk/tallyard.tex | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/doc/oresec-talk/tallyard.tex b/doc/oresec-talk/tallyard.tex index 99ca40a..ed98e17 100644 --- a/doc/oresec-talk/tallyard.tex +++ b/doc/oresec-talk/tallyard.tex @@ -235,10 +235,10 @@ \begin{itemize} \item Everyone now has $S_1$, $S_2$, $\dots$, $S_k$: \pause \begin{align*} - S_1 &= \sum_{j=1}^k c_j + x_1 \sum_{j=1}^k a_{(j,1)} + x_1^2 \sum_{j=1}^k a_{(j,2)} + \cdots + x_1^{k-1} \sum_{j=1}^k a_{(j,2)} \\ - S_1 &= \sum_{j=1}^k c_j + x_2 \sum_{j=1}^k a_{(j,1)} + x_2^2 \sum_{j=1}^k a_{(j,2)} + \cdots + x_2^{k-1} \sum_{j=1}^k a_{(j,2)} \\ + S_1 &= \sum_{j=1}^k c_j + x_1 \sum_{j=1}^k a_{(j,1)} + x_1^2 \sum_{j=1}^k a_{(j,2)} + \cdots + x_1^{k-1} \sum_{j=1}^k a_{(j,k-1)} \\ + S_1 &= \sum_{j=1}^k c_j + x_2 \sum_{j=1}^k a_{(j,1)} + x_2^2 \sum_{j=1}^k a_{(j,2)} + \cdots + x_2^{k-1} \sum_{j=1}^k a_{(j,k-1)} \\ &\vdots \\ - S_k &= \sum_{j=1}^k c_j + x_k \sum_{j=1}^k a_{(j,1)} + x_k^2 \sum_{j=1}^k a_{(j,2)} + \cdots + x_k^{k-1} \sum_{j=1}^k a_{(j,2)} + S_k &= \sum_{j=1}^k c_j + x_k \sum_{j=1}^k a_{(j,1)} + x_k^2 \sum_{j=1}^k a_{(j,2)} + \cdots + x_k^{k-1} \sum_{j=1}^k a_{(j,k-1)} \end{align*} \pause \item These are $k$ points all on the same $k-1$ degree polynomial: \begin{equation*} @@ -253,17 +253,17 @@ coefficients and constant term of it with a little linear algebra: \pause \begin{equation*} \begin{bmatrix} - 1 & x_1 & x_1^2 & \cdots & x_1^k \\ - 1 & x_2 & x_2^2 & \cdots & x_2^k \\ + 1 & x_1 & x_1^2 & \cdots & x_1^{k-1} \\ + 1 & x_2 & x_2^2 & \cdots & x_2^{k-1} \\ \vdots & & & \ddots \\ - 1 & x_k & x_k^2 & \cdots & x_k^k + 1 & x_k & x_k^2 & \cdots & x_k^{k-1} \end{bmatrix} \begin{bmatrix} \sum_{j=1}^k c_j \\ \sum_{j=1}^k a_{(j,1)} \\ \sum_{j=1}^k a_{(j,2)} \\ \vdots \\ - \sum_{j=1}^k a_{(j,2)} + \sum_{j=1}^k a_{(j,k-1)} \end{bmatrix} = \begin{bmatrix} S_1 \\ @@ -279,10 +279,10 @@ \begin{equation*} \text{RREF}\left( \begin{bmatrix} - 1 & x_1 & x_1^2 & \cdots & x_1^k & S_1 \\ - 1 & x_2 & x_2^2 & \cdots & x_2^k & S_2 \\ + 1 & x_1 & x_1^2 & \cdots & x_1^{k-1} & S_1 \\ + 1 & x_2 & x_2^2 & \cdots & x_2^{k-1} & S_2 \\ \vdots & & & \ddots \\ - 1 & x_k & x_k^2 & \cdots & x_k^k & S_k + 1 & x_k & x_k^2 & \cdots & x_k^{k-1} & S_k \end{bmatrix} \right) \end{equation*} -- 2.38.4